DTSU666 series three phase four wire electronic energy meter DSSU666 series three phase three wire electronic energy meter

Operation Manual

ZTY0.464.1002

Zhejiang Chint Instrument & Meter Co., Ltd. May., 2019.

1. Brief Introduction

1.1 Main application & applicable range

DTSU666 series three phase four wire and DSSU666 series three phase three wire electronic energy meter (din-rail) (hereinafter referred to as the "instrument") is designed based on power monitoring and energy metering demands for electric power system, communication industry, construction industry, etc. as a new generation of intelligent instrument combining measurement and communication function, mainly applied into the measurement and display for the electric parameters in the electric circuit including three voltage, three current, active power, reactive power, frequency, positive& negative energy, four-quadrant energy, etc. Adopting the standard DIN35mm din rail mounting and modular design, it is characterized with small volume, easy installation and easy networking, widely applied into the internal energy monitoring and assessment for industrial and mining enterprises, hotels, schools, large public buildings.

Complied standards:

IEC 61010-1:2010 《Safety requirements for electrical equipment for measurement, control and laboratory use Part1:General requirements》

IEC 61326-1:2013 《Electrical equipment for measurement, control and laboratory use –EMC requirements Part1:General requirements》

1.2 Product Features

- Characterized with positive and reverse active power, combined active power, combined reactive power, four quadrant reactive power metering and storage function with combination mode character can be set.
- 2) RS485 communication interface, easy to exchange data with outside;
- Adopting the standard DIN35mm din rail mounting and modular design, it is characterized with small volume, easy installation and easy networking

DTSU666 series and DSSU666 series three phase electronic energy meter	ZTY0.464.1002
Operation manual	Page 2, Total 19

1.3 Model composition and meanings

Figure 1 Model No. & meanings

Table 1	product	model	and	specifica	ation
10010 1	p10000000			opeenie.	

	Reference	Current	Impulse constant			
Model	Model voltage spectrum (V)		imp/kWh	imp/kvarh	Accuracy class	
		1 5(6) A	6400	6400	Active class 0.5S, reactive	
DTSU666-DN	3×220/380	1.3(0)A	0400	0400	class 2	
		5(80)A	400	400	Active class 1. Reactive	
					class 2	
		15(6)	6400	6400	Active class 0.5S, reactive	
DSSU666-DN	2 \ 2 2 0	1.3(0)A	0400	0400	class 2	
	3 ~ 380	5(00) 1	400	400	Active class 1. Reactive	
		5(80)A		400	class 2	

1.4 Applicable environmental condition

1.4.1 Temperature range

Indoor type:

Regulated working temperature range: $-10^{\circ}C \sim +45^{\circ}C$;

Limited working temperature range: $-25^{\circ}C \sim +75^{\circ}C$;

DTSU666 series and DSSU666 series three phase electronic energy meter	ZTY0.464.1002
Operation manual	Page 3, Total 19

1.4.2 Relative humidity(Annually average): $\leq 75\%$;

1.4.3 Atmospheric pressure: 63.0kPa \sim 106.0kPa(altitude 4km and below), excepting the requirements for special orders.

2. Working Principle

The instrument are composed of high accurately integrated circuit specially for measurement

(ASIC) and managing MCU, memory chip, RS485 communication module, etc.

The working principle block diagram of the instrument is shown in figure 2

Figure 2 Working principle block diagram

2.1.Principle for the main function module

2.1.1.Metering part

The special metering integrated circuit (ASIC) integrated six load two order $\sum -\Delta$ type of A/D conversion, please take the digital signal processing measured by the voltage circuit as well as all the power, energy, effective values, power factor and frequency. This metering chip can measure the active power, reactive power, apparent power, active energy, reactive power, apparent energy of each phase and combined phase, and at the same time measuring current, voltage effective values, power factor, phase angle, frequency and other parameters, entirely satisfying the needs of power meter. The chip provides an SPI interface, convenient for metering parameters as well as parameter calibration between the management MCU.

2..1.2.Data processing part

Management MCU will timely read the electrical parameters such as current, voltage, power, etc. in the metering chips, judging the current quadrant based on the read data, and judging the current operated rate based on time and time rate, then adding the energy read from the metering chip to the corresponding quadrant energy and total energy based on the rate and quadrant, at the same time, calculating the corresponding combined energy based on the energy combination mode, and then store and backup the energy.

The management MCU drives LCD module to display and exchange data with the outside through RS485 communication interface.

3. Main Technical Performance & Parameters

3.1. limit of error caused by the current augment

type	Range of current	Power factor	Percentage error limit of various grade instruments (%)				
	-		0.5S	Class 1	Class 2		
Access via	$0.01I_n \le I < 0.05I_n$	1	±1.0	±1.5	±2.0		
current	$0.05I_n \leq I \leq I_{max}$	1	±0.5	±1.0	±1.2		
transformer	$0.02I_n \le I \le 0.1I_n$	0.5L、0.8C	±1.0	±1.5	±2.0		
	$0.1I_n \leq I \leq I_{max}$	0.5L、0.8C	±1.0	±1.0	±1.2		
	$0.05I_{b} \le I < 0.1I_{b}$	1	-	±1.5	±2.0		
Direct access	$0.1I_b \le I \le I_{max}$	1	_	±1.0	±1.2		
instrument	$0.01I_{b} \le I < 0.2I_{b}$	0.5L、0.8C	_	±1.5	±2.0		
	$0.2I_b \leq I \leq I_{max}$	0.5L、0.8C	-	±1.0	±1.2		
Remark	In: secondary rated cur the meter;	rrent of the curre	ent transformer	; I _b : calibrate	ed current of		
	L:inductive: C: capacitive:						

Table 2 The limit value of the active percentage error of meters on balanced load

Table 3 The limit value of the reactive percentage error of meters on balanced load

DTSU666 series and DSSU666 series three phase electronic

ZTY0.464.1002

Operation manual

energy meter

Page 5, Total 19

Current value		sinφ	Percentage error limit of various grade instruments (%)
Direct access instrument	Access via transformer	capacitive)	2
$0.05I_{\rm b} \le I < 0.1I_{\rm b}$	$0.02I_{\rm n} \le I < 0.05I_{\rm n}$	1	±2.5
$0.1I_{\rm b} \le I \le I_{\rm max}$	$0.05I_n \leq I \leq I_{max}$	1	±2.0
$0.1I_{\rm b} \le I < 0.2I_{\rm b}$	$0.05I_{\rm n} \le I < 0.1I_{\rm n}$	0.5	±2.5
$0.2I_{\rm b} \leq I \leq I_{\rm max}$	$0.1I_n \leq I \leq I_{\max}$	0.5	±2.0
$0.2I_{\rm b} \le I \le I_{\rm max}$	$0.1I_{\rm n} \leq I \leq I_{\rm max}$	0.25	±2.5

Table 4 The limit value of the active percentage error of meters on imbalanced load

Current value		Power factor	Percentage error limit of various grade instruments (%)		
Direct access instrument	Access via transformer		0.5S	Class 1	Class 2
$0.1 I_{\rm b} \le I \le I_{\rm max}$	$0.05I_{\rm n} \leq I \leq I_{\rm max}$	1	±0.6	±2.0	±3.0
$0.2I_{\rm b} \leq I \leq I_{\rm max}$	$0.1I_n \leq I \leq I_{\max}$	0.5L	±1.0	±2.0	±3.0

Table 5 The limit value of the reactive percentage error of meters on imbalanced load

Current value		Current value	Percentage error limit of various grade instruments (%)	
Direct access instrument	Direct access instrument		Class 2	
$0.1 I_{\rm b} \leq I \leq I_{\rm max}$	$0.05I_n \leq I \leq I_{max}$	1	±3.0	
$0.2I_{\rm b} \leq I \leq I_{\rm max}$	$0.1I_n \leq I \leq I_{\max}$	0.5	±3.0	

3.2. Start

Under the power factor of 1.0 and started current, the instrument can be started and continuously measure (for multiple phase instrument, it will bring balanced load). If the instrument is designed based on measurement for dual directional energy, then it is applicable for each direction of energy.

instrument		Dowon footon		
instrument	0.5S	1	2	Power factor
Direct access instrument	-	$0.004I_{b}$	$0.005I_{b}$	1
Access via CT	$0.001 I_b$	$0.002I_{b}$	$0.003I_{b}$	1

Table 3 start current

DTSU666 series and DSSU666 series three phase electronic energy meter	ZTY0.464.1002
Operation manual	Page 6, Total 19

3.3. Defluction

When adding voltage while there is no current on the current circuit, the test output of the instrument shall not produce another pulse. When testing, the current circuit shall be opened, and the added voltage for voltage circuit shall be 115% of the referenced voltage.

Shortest testing time Δt :

For instrument of class 0.5S and class1:
$$\Delta t \ge \frac{600 \times 10^6}{k \cdot m \cdot U_n \cdot I_{\text{max}}} [\text{min}]$$

For instrument of class 2:
$$\Delta t \ge \frac{480 \times 10^6}{k \cdot m \cdot U_n \cdot I_{\text{max}}} [\text{min}]$$

From the formula, k represents meter constant (imp/kWh), m represents measuring components, Un represents referenced voltage (V) and Imax represents the maximized current (A).

3.4. Electrical parameters

Specified operating voltage range	0.9Un~1.1Un	
Extended operating voltage range	0.8Un~1.15Un	
Ultimate operating voltage range	0 Un~1.15Un	
Power consumption of the voltage	\leq 1.5W and 6VA	
circuit		
Power consumption of the current	$I_b < 10A \leq 0.2VA$	
circuit	$I_b \ge 10A \le 0.4 VA$	
Data save time after power off	≥10 years	

Table 7 Electrical parameters

4.Key components adoption

4.1.Metering chip

HT7038.

- 4.2.Crystal oscillator
 - 5.5296MHz and 32.768kHz

4.3.Printed PCB

energy meter

ZTY8.067.2266, ZTY8.067.2267, ZTY8.067.2288.

4.4.Power transformer

ZTY6.170.275.

4.5.Current transformer

HLX1 5(80)A/2mA, HLX1 1.5(6)A/0.75mA.

- 5.Main function
- 5.1.Displayed function

From the displayed interface, the electrical parameter and energy data are all primary side data (that is, the multiplied by current and voltage ratios). The energy measuring value will be displayed seven bits, with the displaying range from 0.00kWh to 9999999MWh.

Diagram 2 Liquid crystal display

Table 8 Display interface

No.	Display interface	Instruction	No.	Display interface	Instruction
1		Combined active energy =10000.00kWh	11	I E 5.002 A	Phase C current =5.002A
2	Inp.	Positive active energy =10000.00kWh	12	PL 329 1 ^k	Combined phase active power =3.291kW
3	Exp. Exp. WAh Varh	Reserve active energy =2345.67kWh	13		Phase A active power =1.090kW

DTSU666 series and DSSU666 series three phase electronic energy meter

ZTY0.464.1002

Operation manual

Page 8, Total 19

4		Instrument 12 bit	14	Pb [10 I ^t	Phase B active power =1.101kW
5		address = 000000000001	15		Phase C active power =1.100kW
6	UR 2200 ,	Phase A voltage =220.0V	16	FL 0.500	Combined phase power factor PFt=0.500L
7	<u>UB 220. I</u> v	Phase B voltage =220.1V	17	FR (000	Phase A power factor PFa=1.000L
8	VIC 220.2v	Phase C voltage =220.20V	18	Fb 0.500	Phase B power factor PFb=0.500L
9	IR 5.000 A	Phase A current =5.000A	19	FE-0.500	Phase C power factor PFc=0.500L
10		Phase B current =5.001A			

Remarks: For the default combination characters from the factory, please see 5.4 energy measurement functions.

- 5.2. Programming function
- 5.2.1.Programming parameter

DTSU666 series and DSSU666 series three phase electronic

ZTY0.464.1002

energy meter

Operation manual

Page 9, Total 19

Parameter	Value range	Instruction
٢£	1~9999	Current ratio, used for setting the input loop current ratio: When the current is connected to the line via the transformer, Ct=the rated current of the primary loop / the rated current of the secondary circuit; When the current is directly connected to the line, Ct shall be set as 1.
PĿ	0.1~999.9	Voltage ratio, used for setting the voltage ratio of the input loop; When the voltage is connected to the line via the transformer, Pt= the rated voltage of the primary loop / the rated voltage of the secondary circuit; When the voltage is directly connected to the line, Pt shall be set as 1.0.
Prot	1: 645	Communication protocol switches: 1: Dl/T 645-2007;
68ud	0: 1.200; 1: 2.400; 2: 4.800; 3: 9.600;	Communication baud rate: 0 : Communication baud rate to be 1200bps; 1 : Communication baud rate to be 2400bps; 2: Communication baud rate is 4800bps; 3: Communication baud rate is 9600bps;
Rddr	1~247	Communication address
nEE	0: n.34; 1: n.33;	Option for wiring mode: 0: n.34 represents three phase four wire; 1: n.33 represents three phase three wire.
ELr.E	0:n0; 1:E	The setting is 1, representing the allowed instrument energy data clearance, which will be zero reset after clearing.

DTSU666 series and DSSU666 series three phase electronic energy meter ZTY Operation manual Page 2

01 C	0:P; 1:Q;	Pulse output:
ГЦИЭ	2:S;	0: active energy pulse; 1: reactive energy pulse; 2: Others.
		Display in turns(second)
d ISP	0~30	0: Timely display; $1 \sim 30$: Time interval of actual
		display.
		Backlight lighting time control (minutes)
6.LCd	0~30	0: Normally light; $1 \sim 30$: backlight lighting time
		without button operation
codE	1~9999	Programming code settings

5.2.2.Programming operation

Button description: "SET" button represents "confirmation", or "cursor shift" (when input digits), "ESC" button represents "exit", " \rightarrow " (" \checkmark ") button represents "add". The input code is (default 701).

Diagram 3 Setting examples for active or reactive energy pulse switching

Diagram 4 Setting examples for current ratio

When input digits, """ can be used as cursor " – "motion button; "" is "add" button, "

"is Exit the programming operation interface or switch to the character interface from digit modification interface, add from the beginning after setting the digit to the maximum value.

6. Communication function

Characterized with a RS485 communication interface, the baud rate can be changed between 1200bps, 2400bps, 4800bps and 9600bps. The default baud rate is 2400bps, with the calibration bit and stop bit to be E.1, and instrument address (please see instrument factory number or crystal display screen).

Communication protocol: complied with the requirement of DL / T645—2007 Multifunctional meter communication protocol

- 7. Energy measurement function
- 7.1. Energy measurement four quadrant

The horizontal axis of the measurement plane represents the current vector I (fixed on the horizontal axis), and the instantaneous voltage vector is used to represent the current power transmission. Compared with the current vector I, it has phase angle ϕ .

The counter-clockwise direction ϕ angle is positive. A schematic diagram of the four-quadrant is shown in Figure 2.

Table 10 Measurement schematic diagram for energy four quadrants

Remarks 1: The measurement method for the combined active energy depends on the contents of character words of the active combined mode.

Character words of active combined mode:

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Decorrio	Decorris	Decorrio	Decomio	Reverse active	Reverse active	Positive active	Positive active
Reserve	Reserve	Reserve	Reserve	(0 no less, 1	(0 not added,	(0 no less, 1	(0 not added,
u	u	u	u	less)	1 added)	less)	1 added)

 Table 11 Character words of active combined mode

Example: when the content of the active combination mode is 05,

Combined active energy=positive active energy + reverse active energy

Factory default value: combined active energy= positive active energy

Remarks 2: The combined reactive energy four quadrant can be respectively measured and the reactive energy can be set as the sum of arbitrarily four quadrant energy, with its measurement mode depending on the contents of character word 1 and 2 of the reactive combination mode.

Table 12 Character words of the combined reactive combination mode

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1	Bit0
------------------------------------	------

DTSU666 series and DSSU666 series three phase electronic energy meter

ZTY0.464.1002

Operation manual

Page 13, Total 19

IV	IV	III	III	II quadrant	II quadrant	I quadrant	I quadrant
quadrant	quadrant	quadrant	quadrant	(0 no less,	(0 not	(0 no less,	(0 not
(0 no less,	(0 not	(0 no less,	(0 not	1 less)	added, 1	1 less)	added, 1
1 less)	added, 1	1 less)	added, 1		added)		added)
	added)		added)				

Obit: I quadrant reactive; 0-Not counted into combined reactive; 1-Counted into combined reactive; First bit: I quadrant reactive; 0- Not counted into combined reactive; 1-Counted into combined reactive Second bit: II quadrant reactive; 0- Not counted into combined reactive; 1- Counted into combined reactive Third bit: II quadrant reactive; 0- Not counted into combined reactive; 1- Minus the quadrant reactive; Fourth bit: III quadrant reactive; 0- Not counted into combined reactive; 1- Counted into combined reactive Fifth bit: III quadrant reactive; 0- Not counted into combined reactive; 1- Counted into combined reactive; Sixth bit: IV quadrant reactive; 0- Not counted into combined reactive; 1- Counted into combined reactive Seventh bit: IV quadrant reactive; 0- Not counted into combined reactive; 1- Counted into combined reactive; Sixth bit: IV quadrant reactive; 0- Not counted into combined reactive; 1- Minus the quadrant reactive; Seventh bit: IV quadrant reactive; 0- Not counted into combined reactive; 1- Minus the quadrant reactive; For example: when the content of the reactive combination mode is A5; Combined reactive energy= I quadrant reactive +II quadrant reactive –III quadrant reactive-IV quadrant reactive

Factory default value: combined reactive 1 energy= I +IV, combined reactive 2 energy= II +III.

8. Outline and installation size

Model	modulus	Outline size (length× width×	Installation size (din
WIOdel		height) mm	rail)
DTSU666-DN	4	100,770,765,5	DIN35 Standard din
DSSU666-DN	4	100×72×03.3	rail

Table 13 Installation size

DTSU666 series and DSSU666 series three phase electronic	777.00 464 1002	
energy meter	Z1 Y0.464.1002	
Operation manual	Page 14, Total 19	

Diagram 5 Outline size diagram (four modulus)

- 9. Installation and operation manual
- 9.1. Inspection Tips

When unpacking the carton, if the shell has obvious signs caused by severe impact or falling, please contact with the supplier as soon as possible.

After the instrument being removed from the packing box, it should be placed on a flat and safe plane, facing up, not overlaying for more than five layers. If not installed or used in a short time, the electric meter shall be packed and placed to the original packing box for storage.

- 9.2. Installation and tips
- 9.2.1. Installation and Inspection

If the model No or configuration in the original packing box is not in accordance with the requirement, please contact with the supplier. While, if the inner package or shell has been damaged after removing the instrument from the packing box, please do not install, power on the instrument, please contact with the supplier as soon as possible, instead.

9.2.2.Installation

It requires experienced electrician or professional personnel to install it and you must read this operation manual. During the installation, if the shell has obvious damage or marks caused by violent impact or falling, please do not install it or power on and contact with the supplier as soon as possible.

Typical wiring

Three phase four wire: direct connect

Three phase four wire: via current transformer

RS485

Diagram 5

- Voltage signal (only for connection via current transformer)
- 2------UA (Phase A voltage input terminal)
- 8------UC (Phase C voltage input terminal)
- Current signal:

1-----IA*(Phase A current input terminal)

4-----IB*(Phase B current input terminal)

7-----IC*(Phase C current input terminal)

◆ RS485 Communication wire

Three phase three wire: direct connect

Three phase three wire: via current transformer

Diagram 4

19	21
Т	Т
S+	S-

Pulse output

Diagram 6

5 ------UB (Phase B voltage input terminal)

10-----UN (Phase N voltage input terminal)

3-----IA (Phase A current output terminal)

6-----IB (Phase B current output terminal)

9-----IC(Phase C current output terminal)

25-----B (RS485 Terminal B)

DTSU666 series and DSSU666 series three phase electronic

energy meter

- ♦ Auxiliary function
- 19----- Active energy and reactive energy output high terminal
- 21----- Active energy and reactive energy output low terminal

10 Diagnosi	s analysis	and	elimination	for	common	faults
10.Diagnosi	s, anarysis	anu	cimination	101	common	rauns

Fault phenomenon	Reason analysis	Elimination
No display when powered on	 Incorrect wiring Abnormal voltage for the instrument 	 If it is wrongly connected, please reconnect based on the right wiring mode (see the wiring diagram). If the supplied voltage is abnormal, please choose the specified voltage. If not the above problems, please contact with the local supplier.
Abnormal RS485 communication	 RS485 communication cable is opened, short circuit or reversely connected. Address, baud rate, data bit and check bit is not in accordance with the host computer. The end of RS485 communication cable has not been matched with resistance (when the distance over than 100 meters) Not matched with the communication protocol order of the host computer 	 If there is any problem with the communication cable, please change it. Set the address, baud rate, data bit and check bit through buttons and confirm it is the same with the host computer, then set the operation to be "parameter settings". If the communication distance is over than 100 meters, and the communication parameter settings are the same as the host computer, but cannot be communicated, then please lower the baud rate or add a resistance of 120Ω at the

DTSU666 series and DSSU666 series three phase electronic energy meter

ZTY0.464.1002

Operation manual

Page 17, Total 19

		start terminal and ending
Abnormal data for the electrical parameter (voltage, current, power, etc.)	 The transformer's ratio hasn't been set, and the instrument displays the secondary side data. Wrong wiring. 	 If setting the transformer ratio, please set the voltage ratio and current ratio based on "parameter setting" If wrongly connected, please connect the voltage and current of phase A, B and C to the wiring terminal of the instrument.
Abnormal data for the electrical parameter read by communication (voltage, current, power, etc.)	 Data read by communication is secondary side data, without transformer ratio. Wrong analysis for data frame 	 Multiply the data read by communication with the voltage ratio and current ratio. Analyze the data frame based on the format of the communication protocol, please pay attention to the mode of the big and small end of data.

11. Transportation & Storage

When transporting and unpacking the products, please confirm they are not severely impacted, transporting and storing based on *Transportation, basic environmental conditions and testing methods for instrument and meters* of JB/T9329-1999.

The instrument and accessories shall be stored in the dry and ventilated places, to avoid humidity and corrosive gas erosion, with the limited environmental temperature for storage to be $-40^{\circ}C \sim +70^{\circ}C$ and relative humidity not exceeding 85%.

12. Maintenance & Service

We guarantee free reparation and change for the multi-meter if found any unconformity with the standard, under circumstance of that the users fully comply with this instructions and complete seal after delivery within 18 months.

DTSU666 series and DSSU666 series three phase electronic energy meter	ZTY0.464.1002
Operation manual	Page 18, Total 19

Dear clients,

Please assist us: when the product life is end, to protect our environment, please recycle the product or components, while for the materials that cannot be recycled, please also deal with it in a proper way. Really appreciate your cooperation and support.

Name of Company: Zhejiang Chint Instrument & Meter Co., Ltd. Address: Wenzhou Bridge Industrial Zone, Yueqing, Zhejiang, China. Zip Code: 325603 Telephone: 0577-62877777 Fax: 0577-62891577 Service hotline: 4008177777 Fake Complaint: 0577-62789987 Website: http: //www.chint.com Email: ztyb@chint.com Date of Issue: May, 2019.. No.:ZTY0.464.1002V1